U.S. Department of the Interior • U.S. Geological Survey

MINERAL INDUSTRY SURVEYS

Gordon P. Eaton, Director

Reston, VA 20192

For information, contact:

Michael Fenton, Iron and Steel Scrap Specialist Telephone: (703) 648-4972, Fax: (703) 648-7757

E-mail: mfenton@usgs.gov

Jennifer Solet (Data), (703) 648-7963

MINES-DATA: (703) 648-7799

MINES FaxBack: (703) 648-4999 Internet: http://minerals.er.usgs.gov/minerals

IRON AND STEEL SCRAP IN MARCH 1997

Estimated consumption of iron and steel scrap on a daily average basis in March 1997 was down 4% compared with that in February 1997, according to the U.S. Geological Survey. Compared with February 1997 data, daily average production fell 6%, net receipts fell slightly, and stocks at the end of the month rose 4%. These observations are based upon responses from 73% of the companies surveyed that manufacture pig iron and semi-finished steel products, which represent 58% of the total scrap consumption in those sectors, and estimates for non-respondents of this survey.

On a daily average basis, pig iron production and consumption was down 5% from that in February 1997. Stocks of pig iron at month's end rose 6% compared with those at the end of February 1997.

Exports of ferrous scrap for the month of January 1997 fell 4% compared with those in December 1996. Mexico was the leading principal country of destination, accounting for 30% of the total exports in January 1997, followed by Korea with 23%, and Canada with 14%. Exports of ferrous scrap for the month of February 1997 rose 8% compared with those in January 1997. Korea was the leading principal country of destination, accounting for 17% of the total exports in February 1997, followed by Mexico with 24%, and Canada with 19%. Table 7 shows that New York, NY, was the leading customs district for tonnage of exports in February 1997, accounting for 17% of

total exports, followed by Laredo, TX, with 13%, and Los Angeles, CA, with 12%.

Table 10 reveals that Detroit, MI, was the leading customs district for tonnage of imports in February 1997, accounting for 38% of the total imports, followed by New Orleans, LA, with 29%, and Seattle, WA, with 13%.

According to the American Iron and Steel Institute (AISI), domestic raw steel production in March 1997 amounted to 8,320,000 metric tons, up 11% from 7,500,000 metric tons in February 1997, and up slightly from 8,290,000 metric tons in March 1996. Year-to-date production through March 1997 was 23,800,000 metric tons, down slightly compared with 24,100,000 metric tons for the same period in 1996. The electric furnace portion of raw steel production for March 1997 was 42%, down slightly from that in February 1997, and unchanged from that in March 1996.

According to the AISI, raw steel capability utilization in March 1997 was 90%, up slightly from that in February 1997, and down 4% from that in March 1996. Continuous cast steel production in the United States accounted for 94% of total raw steel production in March 1997, and was unchanged from that in February 1997, while up slightly from that in March 1996. Through March, continuous cast steel production represented 94% of total steel production in 1997 compared with 93% in 1996.

TABLE 1 IRON AND STEEL SCRAP, PIG IRON, AND DIRECT-REDUCED IRON STATISTICS 1/ FOR STEEL PRODUCERS 2/

(Thousand metric tons)

		March 1997			Year to date			
		Electric			Electric			
	Integrated	furnace	Total for	Integrated	furnace	Total for		
	steel	steel	steel	steel	steel	steel		
	producers 3/	producers 4/	producers	producers 3/	producers 4/	producers		
Scrap:	_							
Receipts from dealers and other sources	710	2,800	3,600	2,100	8,000	10,000		
Receipts from other own company plants	_ W	W	220	W	W	590		
Production recirculating scrap	730	420	1,200	2,200	1,200	3,400		
Production obsolete scrap	11	3	13	31	7	38		
Consumption (by type of furnace):	_							
Blast furnace	130		130	410		410		
Basic oxygen process	W	W	1,400	W	W	4,000		
Electric furnace	W	W	3,300	W	W	9,500		
Other (including air furnace) 5/	(6/)		(6/)	(6/)		(6/)		
Total consumption	1,500	3,300	4,700	4,300	9,600	14,000		
Shipments	W	W	190	W	W	560		
Stocks end of month	2,000	2,600	4,600	XX	XX	XX		
Pig iron (includes hot metal):	=							
Receipts	W	W	420	W	W	1,300		
Production	4,200		4,200	12,000		12,000		
Consumption (by type of furnace):								
Basic oxygen process	W	W	4,200	W	W	12,000		
Direct castings 7/	(8/)		(8/)	(8/)		(8/)		
Electric furnace	W	W	140	W	W	410		
Total consumption	4,200	140	4,300	12,000	410	13,000		
Shipments	(9/)		(9/)	(9/)		(9/)		
Stocks end of month	W	W	520	XX	XX	XX		
Direct-reduced iron: 10/	_							
Receipts	W	W	88	W	W	230		
Consumption (by type of furnace):	_							
Blast furnace	110		110	290		290		
Basic oxygen process	(6/)		(6/)	(6/)		(6/)		
Electric furnace	- · · · ·	(9/)	(9/)		(9/)	(9/)		
Total consumption	110	(9/)	110	290	(9/)	290		
Shipments	- 			(9/)		(9/)		
Stocks end of month	W	W	230	XX	XX	XX		

W Withheld to avoid disclosing company proprietary data; included in "Total for steel producers" and/or "Total consumption." XX Not applicable.

- 3/ Includes data for electric furnaces operated by integrated steel producers.
- 4/ Includes minimill and specialty steel producers; includes data for other furnaces operated by these steel producers.
- 5/ Includes vacuum melting furnaces and miscellaneous uses.
- 6/ Withheld to avoid disclosing company proprietary data; included in "Consumption: Blast furnace."
- 7/ Includes ingot molds and stools.
- 8/ Withheld to avoid disclosing company proprietary data; included in "Consumption: Basic oxygen process."
- 9/ Withheld to avoid disclosing company proprietary data.
- 10/ Includes direct-reduced iron, hot-briquetted iron, and iron carbide. Domestic production data are included in "Receipts."

^{1/} Data are rounded to two significant digits; may not add to totals shown.

^{2/} Includes manufacturers of raw steel that also produce steel castings. March 1997 data are based on returns from 73% of monthly respondents, representing 58% of scrap consumption during this month, and estimates for nonrespondents of this survey. Year to date data are based on returns from 76% of respondents, representing 62% of scrap consumption and estimates for nonrespondents.

TABLE 2
RECEIPTS FROM OUTSIDE SOURCES, PRODUCTION, CONSUMPTION, AND STOCKS OF IRON AND STEEL SCRAP, BY GRADE, 1/ FOR STEEL PRODUCERS 2/

(Thousand metric tons)

		March 1997				Year to date	
Item	Receipts of scrap from brokers, dealers, and other outside sources	Production of home scrap (recirculating scrap resulting from current operations)	Consumption of purchased and home scrap 3/	Ending stocks	Receipts of scrap from brokers, dealers, and other outside sources	Production of home scrap (recirculating scrap resulting from current operations)	Consumption of purchased and home scrap 3/
Carbon steel:	outside sources	current operations)	nome scrap 3/	Stocks	outside sources	current operations)	nome scrap 3/
Low-phosphorus plate and							
punchings	39		38	18	110	W	110
Cut structural and plate	290	59	370	330	880	170	1,100
No. 1 heavy melting steel	530	320	890	660	1,500	920	2,600
No. 2 heavy melting steel	380	46	430	410	1,200	120	1,300
No. 1 and electric furnace							
bundles	480	W	560	450	1,400	W	1,700
No. 2 and all other bundles	81	W	87	60	250	W	260
Electric furnace 1 foot and							
under (not bundles)	W	W	W	W	W	W	W
Railroad rails	9	W	11	9	26	W	34
Turnings and borings	190	7	200	120	530	16	580
Slag scrap	63	110	190	170	190	330	550
Shredded and fragmentized	650	W	710	490	1,700	W	2,000
No. 1 busheling	380	W	360	270	1,000	W	1,000
Steel cans (Post consumer)	29	W	33	W	84	W	100
All other carbon steel scrap	230	250	460	450	640	760	1,300
Stainless steel scrap	65	38	99	50	170	100	280
Alloy steel scrap	14	58	68	80	43	160	190
Ingot mold and stool scrap	W	W	6	25	1	W	21
Machinery and cupola cast iron	W	W	W	5	20	W	W
Cast iron borings	16	W	19	9	52	W	54
Motor blocks	W		W	W	W		W
Other iron scrap	28	35	67	W	89	110	220
Other mixed scrap	60	46	120	W	170	140	350
Total	3,600	1,200	4,700	4,600	10,000	3,400	14,000

W Withheld to avoid disclosing company proprietary data; included in "Total."

^{1/} Data are rounded to two significant digits; may not add to totals shown.

^{2/} Includes manufacturers of raw steel that also produce steel castings.

^{3/} Includes recirculating scrap and home-generated obsolete scrap.

TABLE 3 RECEIPTS FROM OUTSIDE SOURCES, PRODUCTION, AND CONSUMPTION OF IRON AND STEEL SCRAP, 1/ BY REGION AND STATE, FOR STEEL PRODUCERS 2/

(Thousand metric tons)

		March 1997			Year to date	
	Receipts of scrap	Production of home		Receipts of scrap	Production of home	
	from brokers,	scrap (recirculating	Consumption of	from brokers,	scrap (recirculating	Consumption of
	dealers, and other	scrap resulting from	purchased and	dealers, and other	scrap resulting from	purchased and
Region and State	outside sources	current operations)	home scrap 3/	outside sources	current operations)	home scrap 3/
Mid-Atlantic and New England:		•	•			•
New Jersey, New York	120	8	140	340	22	380
Pennsylvania	300	190	510	940	600	1,600
Total	420	200	650	1,300	620	2,000
North Central:						
Illinois	370	90	460	1,100	260	1,300
Indiana	280	360	650	820	1,100	1,900
Iowa, Minnesota, Missouri,						
Nebraska, Wisconsin	220	16	200	660	52	610
Michigan	170	61	230	530	180	690
Ohio	520	150	680	1,400	430	1,900
Total	1,600	680	2,200	4,500	2,000	6,400
South Atlantic:						
Delaware, Maryland, Virginia,						
West Virginia	120	77	200	380	230	610
Florida, Georgia, North						
Carolina, South Carolina	180	17	190	530	51	570
Total	300	94	400	900	280	1,200
South Central:						
Alabama, Kentucky,						
Mississippi, Tennessee	320	64	390	950	180	1,100
Arkansas, Louisiana,						
Oklahoma, Texas	670	57	720	1,700	170	2,100
Total	1,000	120	1,100	2,600	350	3,300
Mountain and Pacific:						
Arizona, California, Colorado,						
Oregon, Utah, Washington	280	63	360	840	170	1,100
Grand total	3,600	1,200	4,700	10,000	3,400	14,000

^{1/} Data are rounded to two significant digits; may not add to totals shown.

^{2/} Includes manufacturers of raw steel that also produce steel castings.

^{3/} Includes recirculating scrap and home-generated obsolete scrap.

TABLE 4 RECEIPTS OF IRON AND STEEL SCRAP, 1/ BY REGION 2/ AND GRADE, FOR STEEL PRODUCERS 3/ 4/ $^{\prime}$

(Thousand metric tons)

		N	March 1997				Year to date			
	Mid-Atlantic				Mountain	Mid-Atlantic				Mountain
	and	North	South	South	and	and	North	South	South	and
Item	New England	Central	Atlantic	Central	Pacific	New England	Central	Atlantic	Central	Pacific
Carbon steel:										
Low-phosphorus plate and										
punchings	15	22	W	W		49	58	W	W	
Cut structural and plate	40	120	50	58	25	120	350	170	180	W
No. 1 heavy melting steel	49	220	33	190	39	140	650	96	530	130
No. 2 heavy melting steel	16	140	35	140	55	63	410	100	430	180
No. 1 and electric furnace										
bundles	37	360	26	51	7	130	1,100	76	130	20
No. 2 and all other bundles	10	29	6	26	11	33	90	19	77	31
Electric furnace 1 foot and										
under (not bundles)		W			4		W			4
Railroad rails	W	W		5		W	W		11	7
Turnings and borings	27	35	27	100	4	80	110	82	250	12
Slag scrap	9	25	W	12	2	27	89	W	30	5
Shredded and fragmentized	56	210	67	240	79	160	550	200	560	240
No. 1 busheling	62	160	27	W	10	200	440	70	W	34
Steel cans (Post consumer)	6	W	W	W	(5/)	19	W	15	W	1
All other carbon steel scrap	17	170	5	30	10	52	460	15	84	31
Stainless steel scrap	56	9				160	15			
Alloy steel scrap	8	4	(5/)	W		25	11	1	W	
Ingot mold and stool scrap	(5/)	W				(5/)	W		W	
Machinery and cupola cast iron		W		W			W		W	
Cast iron borings	W	W		7		W	W		19	
Motor blocks	(5/)		W			(5/)		W		
Other iron scrap	W	W	2	8		16	W	11	21	(5/)
Other mixed scrap	W	W	W	W	32	W	W	W	W	91
Total	420	1,600	300	1,000	280	1,300	4,500	900	2,600	840

W Withheld to avoid disclosing company proprietary data; included in "Total."

^{1/} Scrap received from brokers, dealers, and other outside sources.

^{2/} A breakout of the States within each region is provided in Table 3.

^{3/} Includes manufacturers of raw steel that also produce steel castings.

^{4/} Data are rounded to two significant digits; may not add to totals shown.

^{5/} Less than 1/2 unit.

${\it TABLE~5}$ CONSUMPTION OF IRON AND STEEL SCRAP 1/ BY REGION 2/ AND GRADE, FOR STEEL PRODUCERS 3/

(Thousand metric tons)

		ı	March 1997				7	Year to date		
	Mid-Atlantic				Mountain	Mid-Atlantic				Mountain
	and	North	South	South	and	and	North	South	South	and
Item	New England	Central	Atlantic	Central	Pacific	New England	Central	Atlantic	Central	Pacific
Carbon steel:										
Low-phosphorus plate and										
punchings	17	18	W	W		52	48	W	W	
Cut structural and plate	55	120	92	80	24	160	350	260	230	W
No. 1 heavy melting steel	97	430	59	210	91	280	1,200	170	620	280
No. 2 heavy melting steel	22	160	34	160	57	79	460	110	500	180
No. 1 and electric furnace										
bundles	43	420	30	60	7	160	1,300	W	160	19
No. 2 and all other bundles	11	34	6	26	9	34	99	19	82	30
Electric furnace 1 foot and										
under (not bundles)		W		W	4		W		W	4
Railroad rails	W	W		4		W	W		W	7
Turnings and borings	35	47	25	89	4	100	140	80	250	11
Slag scrap	20	120	21	27	2	61	340	62	81	5
Shredded and fragmentized	82	230	77	240	83	240	610	230	720	250
No. 1 busheling	73	160	24	96	8	210	440	73	W	32
Steel cans (Post consumer)	W	14	W	7	(4/)	W	40	12	W	1
All other carbon steel scrap	43	310	17	71	W	130	900	49	200	W
Stainless steel scrap	88	11				260	25			
Alloy steel scrap	18	46	(4/)	5		55	130	1	12	
Ingot mold and stool scrap	W	1		W	W	W	4		W	W
Machinery and cupola cast iron		W		W			W		W	
Cast iron borings	W	W		7		W	W		19	
Motor blocks	(4/)		W			(4/)		W		
Other iron scrap	16	37	3	9	W	49	120	14	31	W
Other mixed scrap	14	37	W	12	49	43	120	W	34	140
Total	650	2,200	400	1,100	360	2,000	6,400	1,200	3,300	1,100

W Withheld to avoid disclosing company proprietary data; included in "Total."

^{1/} Data are rounded to two significant digits; may not add to totals shown.

^{2/} A breakout of the States within each region is provided in Table 3.

^{3/} Includes manufacturers of raw steel that also produce steel castings.

^{4/} Less than 1/2 unit.

TABLE 6 U.S. EXPORTS OF IRON AND STEEL SCRAP 1/ BY SELECTED REGION AND COUNTRY $2 \slash$

(Thousand metric tons and thousand dollars)

	January	1997	Februar	y 1997	Year to date		
Region and country	Quantity	Value	Quantity	Value	Quantity	Value	
North America and South America:	•		•		•		
Canada	97	11,800	142	13,600	239	25,400	
Mexico	204	26,800	179	22,700	383	49,500	
Venezuela	4	206	9	597	13	803	
Other	1	346	1	857	2	1,200	
Total	306	39,200	332	37,800	638	77,000	
Africa, Europe, and Middle East:							
Belgium			(3/)	89	(3/)	89	
Italy	(3/)	86	(3/)	137	(3/)	223	
South Africa	1	600	2	975	3	1,580	
Spain	5	3,750	9	6,050	14	9,800	
Turkey	88	9,830			88	9,830	
Other	3	1,140	3	905	6	2,040	
Total	97	15,400	14	8,160	111	23,600	
Asia, Australia, and Oceania:							
Australia	1	576	(3/)	44	1	620	
China	32	4,490	30	4,640	62	9,130	
Hong Kong	6	1,370	9	1,550	15	2,930	
India	1	534	28	3,820	29	4,360	
Japan	3	2,000	2	1,330	5	3,330	
Korea, Republic of	162	24,700	239	35,400	402	60,000	
Malaysia	21	2,570			21	2,570	
Pakistan	(3/)	67	(3/)	26	(3/)	93	
Taiwan	63	8,230	62	7,930	124	16,200	
Thailand	(3/)	54			(3/)	54	
Other	1	224	31	3,080	31	3,300	
Total	289	44,800	402	57,800	690	103,000	
Grand total	692	99,400	748	104,000	1,440	203,000	

^{1/} Includes tinplate and terneplate; excludes used rails for rerolling and other uses and ships, boats and other vessels for scrapping. Export valuation is on a "free alongside ship" (f.a.s.) basis.

^{2/} Data are rounded to three significant digits; may not add to totals shown.

^{3/} Less than 1/2 unit.

TABLE 7 U.S. EXPORTS 1/ OF IRON AND STEEL SCRAP 2/ BY REGION AND SELECTED CUSTOMS DISTRICT 3/

(Thousand metric tons and thousand dollars)

	Februar	y 1997	Year t	o date
Region and customs district	Quantity	Value	Quantity	Value
Canadian-U.S. Border:				
Buffalo, NY	9	2,340	17	4,660
Detroit, MI	27	3,880	55	7,670
Duluth, MN			1	117
Pembina, ND	60	3,110	73	4,520
Other 4/	48	4,640	95	8,850
Total	143	14,000	241	25,800
East Coast:				
Boston, MA	19	2,020	115	13,300
Miami, FL	(5/)	105	1	281
New York, NY	127	17,800	265	37,900
Norfolk, VA	16	1,690	16	2,150
Philadelphia, PA	21	2,900	38	4,560
Portland, ME	23	2,540	33	3,680
Other	3	343	5	1,210
Total	208	27,400	473	63,100
Gulf Coast & Mexican-U.S.				
Border (includes Caribbean territories):				
Houston-Galveston, TX	(5/)	188	1	400
Laredo, TX	95	12,100	156	20,100
New Orleans, LA	6	8,550	14	13,600
Tampa, FL	37	3,800	64	8,380
Other	10	710	14	1,190
Total	148	25,300	249	43,700
West Coast:				
Honolulu, HI, and Anchorage, AK	(5/)	17	21	2,640
Columbia-Snake	2	732	26	3,720
Los Angeles, CA	92	15,200	187	30,400
San Diego, CA	34	3,950	55	6,320
San Francisco, CA	91	12,900	126	19,100
Seattle, WA	30	4,180	62	8,340
Total	249	37,000	478	70,500
Grand total	748	104,000	1,440	203,000

^{1/}Re-export activity for February 1997 amounted to 11,100 metric tons valued at \$1,410,000; year to date amounted to 11,300 metric tons valued at \$1,460,000.

²/ Includes tinplate and terneplate; excludes used rails for rerolling and other uses and ships, boats and other vessels for scrapping. Export valuation is on a "free alongside ship" (f.a.s.) basis.

^{3/} Data are rounded to three significant digits; may not add to totals shown.

^{4/} Includes Code 70, which is for low-valued exports from the United States to Canada.

^{5/} Less than 1/2 unit.

TABLE 8 U.S. EXPORTS OF IRON AND STEEL SCRAP AND OTHER FERROUS PRODUCTS BY GRADE 1/ $2\!\!/$

(Thousand metric tons and thousand dollars)

	Februar	y 1997	Year to	date
Item	Quantity	Value	Quantity	Value
No. 1 heavy melting steel	166	19,300	309	35,700
No. 2 heavy melting steel	35	3,790	93	10,100
No. 1 bundles	5	579	5	583
No. 2 bundles	8	803	28	2,710
Shredded steel scrap	205	25,700	428	55,100
Borings, shovelings and turnings	53	3,040	71	4,770
Cut plate and structural	60	7,340	115	14,200
Tinned iron or steel	4	1,280	7	2,690
Remelting scrap ingots	(3/)	38	(3/)	65
Cast iron	47	5,110	100	10,400
Other iron and steel	46	4,690	84	9,320
Total carbon steel and cast iron	629	71,700	1,240	145,000
Stainless steel	23	19,500	46	36,100
Other alloy steel	96	12,600	153	21,500
Total stainless and alloy steel	118	32,100	199	57,600
Total carbon, stainless, alloy steel and				
cast iron	748	104,000	1,440	203,000
Ships, boats, and other vessels for				
breaking up (for scrapping)	7	491	7	530
Used rails for rerolling and other uses	1	466	2	1,020
Total scrap exports	755	105,000	1,450	205,000
Exports of manufactured				
ferrous products:				
Pig iron $<$ or $= 0.5\%$ phosphorus	3	584	5	942
Pig iron > 0.5% phosphorus	3	311	4	409
Alloy pig iron				
Total pig iron	6	895	9	1,350
Direct-reduced iron (DRI)	(3/)	32	(3/)	32
Spongy iron products, not DRI	2	685	2	819
Granules for abrasive cleaning and				
other uses	2	1,390	5	2,760
Powders of alloy steel	(3/)	2,270	1	3,590
Other ferrous powders	2	3,240	4	8,550
Total DRI, granules and powders	7	7,610	11	15,800
Grand total	768	113,000	1,470	222,000

^{1/} Export valuation is on a "free alongside ship" (f.a.s.) basis.

Source: Bureau of the Census.

TABLE 9 U.S. IMPORTS FOR CONSUMPTION OF IRON AND STEEL SCRAP 1/ 2/ BY SELECTED COUNTRY

(Thousand metric tons and thousand dollars)

	Februar	February 1997		
Country	Quantity	Value	Quantity	Value
Canada	132	18,800	261	34,900
Dominican Republic	3	410	3	418
Mexico	6	1,860	14	3,730
Poland		2,800	22	2,800
United Kingdom	30	4,190	30	4,360
Other	8	1,350	32	2,500
Total	202	29,400	362	48,700

^{1/} Includes tinplate and terneplate; excludes used rails for rerolling and other uses and ships, boats and other vessels for scrapping. Import valuation is on a customs basis.

^{2/} Data are rounded to three significant digits; may not add to totals shown.

^{3/} Less than 1/2 unit.

^{2/} Data are rounded to three significant digits; may not add to totals shown.

${\it TABLE~10}\\ {\it U.S.~IMPORTS~FOR~CONSUMPTION~OF~IRON~AND~STEEL~SCRAP~1/~2/}\\ {\it BY~SELECTED~CUSTOMS~DISTRICT}$

(Thousand metric tons and thousand dollars)

-	Februar	y 1997	Year t	o date
Customs district	Quantity	Value	Quantity	Value
Buffalo, NY	24	4,130	47	7,730
Cleveland, OH	4	420	19	1,900
Detroit, MI	77	10,300	145	19,000
El Paso, TX	3	322	6	707
Laredo, TX	3	1,270	6	2,390
New Orleans, LA	59	7,810	59	7,820
Ogdensburg, NY	2	588	3	750
Pembina, ND	1	687	2	785
San Diego, CA	1	376	2	816
Seattle, WA	27	2,810	53	5,360
Other	1	692	20	1,450
Total	202	29,400	362	48,700

^{1/} Includes tinplate and terneplate; excludes used rails for rerolling and other uses and ships, boats and other vessels for scrapping. Import valuation is on a customs basis.

Source: Bureau of the Census.

 ${\rm TABLE~11}$ U.S. IMPORTS OF IRON AND STEEL SCRAP AND OTHER FERROUS PRODUCTS BY GRADE 1/ 2/

(Thousand metric tons and thousand dollars)

	January 1	997	February 1	1997	Year to	date
Item	Quantity	Value	Quantity	Value	Quantity	Value
No. 1 heavy melting steel	2	164	3	271	5	435
No. 2 heavy melting steel	1	166	1	100	2	267
No. 1 bundles	22	2,820	24	3,290	46	6,110
No. 2 bundles	1	110	1	189	2	299
Shredded steel scrap	1	98	34	4,800	35	4,900
Borings, shovelings and turnings	8	847	10	1,020	18	1,870
Cut plate and structural	4	407	4	526	8	933
Tinned iron or steel	2	206	23	2,910	25	3,110
Remelting scrap ingots	18	232	1	248	19	480
Cast iron	9	1,050	7	898	16	1,950
Other iron and steel	73	8,520	61	7,920	134	16,400
Total carbon steel and cast iron	140	14,600	170	22,200	310	36,800
Stainless steel	4	2,010	5	3,300	9	5,300
Other alloy steel	17	2,640	27	3,950	44	6,590
Total stainless and alloy steel	20	4,650	32	7,240	52	11,900
Total carbon, stainless, alloy steel and						
cast iron	160	19,300	202	29,400	362	48,700
Ships, boats, and other vessels for						
breaking up (for scrapping)	(3/)	23	(3/)	16	(3/)	39
Used rails for rerolling and other uses	9	1,910	20	2,880	29	4,790
Total scrap imports	169	21,200	222	32,300	391	53,500
Imports of manufactured						
ferrous products:						
Pig iron < or = 0.5% phosphorus	234	31,600	96	13,700	330	45,200
Pig iron > 0.5% phosphorus						
Alloy pig iron						
Total pig iron	234	31,600	96	13,700	330	45,200
Direct-reduced iron (DRI)	102	12,600	77	10,000	179	22,600
Spongy iron products, not DRI	(3/)	127	(3/)	92	(3/)	219
Granules for abrasive cleaning and						
other uses	2	967	2	855	4	1,820
Powders of alloy steel	2	3,190	2	2,740	4	5,930
Other ferrous powders	7	6,620	6	5,830	12	12,500
m 1557 1 1 1						
Total DRI, granules and powders	113	23,500	86	19,600	199	43,000

^{1/} Import valuation is on a customs basis.

^{2/} Data are rounded to three significant digits; may not add to totals shown.

^{2/} Data are rounded to three significant digits; may not add to totals shown.

^{3/} Less than 1/2 unit.

TABLE 12 U.S. RAW STEEL PRODUCTION, RAW STEEL CAPABILITY UTILIZATION, AND CONTINUOUS CAST STEEL PRODUCTION

	Raw steel p		Raw steel capability utilization, percent		Continuous cast steel production, percent	
		Year		Year		Year
Period	Monthly	to date	Monthly	to date	Monthly	to date
1996:						
March	8,290	24,100	93.8%	93.0%	93.1%	93.0%
April	7,790	31,900	90.5%	92.5%	93.0%	93.0%
May	7,980	40,000	89.7%	92.2%	93.0%	93.0%
June	7,860	47,900	91.3%	92.0%	93.1%	93.0%
July	7,790	55,800	86.6%	91.4%	93.5%	93.1%
August	7,830	63,600	87.1%	90.8%	93.6%	93.2%
September	7,630	71,200	87.7%	90.5%	93.2%	93.1%
October	7,900	79,300	88.0%	90.4%	92.9%	93.1%
November	7,510	86,800	86.5%	90.0%	93.6%	93.2%
December	7,880	94,700	87.9%	89.9%	94.0%	93.2%
1997						
January	7,930	7,930	85.3%	85.3%	94.0%	94.0%
February	7,500	15,400	89.3%	85.8%	94.3%	94.2%
March	8,320	23,800	89.6%	88.3%	94.4%	94.2%

^{1/} Data are rounded to three significant digits; may not add to totals shown.

Source: American Iron and Steel Institute.

 ${\it TABLE~13} \\ {\it COMPOSITE~PRICES~FOR~NO.~1~HEAVY~MELTING~STEEL~SCRAP~AND~PIG~IRON}$

	American Metal Market No. 1 HMS		Iron Age No. 1 HMS		Iron Age Pig Iron	
No. 1 I						
\$/lt	\$/t	\$/lt	\$/t	\$/lt	\$/t	
134.43	132.31	132.28	130.19	NA	NA	
138.42	136.23	136.00	133.85	NA	NA	
136.40	134.25	133.00	130.90	NA	NA	
132.33	130.24	129.05	127.00	NA	NA	
133.51	131.40	129.67	127.62	NA	NA	
136.23	134.08	130.33	128.21	NA	NA	
127.49	125.47	121.58	119.65	NA	NA	
115.14	113.32	108.67	106.95	NA	NA	
116.79	114.95	109.84	108.10	NA	NA	
130.08	130.60	125.60	123.61	NA	NA	
127.44	125.43	120.75	118.84	169.12	166.45	
134.04	131.92	127.50	125.49	170.29	167.60	
128.75	126.72	120.70 r/	118.79 r/	173.04	170.31	
NA	NA	118.25	116.38	170.80	168.10	
NA	NA	121.80	119.88	170.81	168.12	
	No. 1 H \$/lt 134.43 138.42 136.40 132.33 133.51 136.23 127.49 115.14 116.79 130.08 127.44 134.04 128.75 NA	No. 1 HMS \$/lt \$/t 134.43 132.31 138.42 136.23 136.40 134.25 132.33 130.24 133.51 131.40 136.23 134.08 127.49 125.47 115.14 113.32 116.79 114.95 130.08 130.60 127.44 125.43 134.04 131.92 128.75 126.72 NA NA	No. 1 HMS No. 1 H \$/lt \$/t \$/lt 134.43 132.31 132.28 138.42 136.23 136.00 136.40 134.25 133.00 132.33 130.24 129.05 133.51 131.40 129.67 136.23 134.08 130.33 127.49 125.47 121.58 115.14 113.32 108.67 116.79 114.95 109.84 130.08 130.60 125.60 127.44 125.43 120.75 134.04 131.92 127.50 128.75 126.72 120.70 r/ NA NA 118.25	No. 1 HMS No. 1 HMS \$\frac{1}{1} \text{t}\$ \$\frac{1}{1} \text{t}\$ 134.43 132.31 132.28 130.19 138.42 136.23 136.00 133.85 136.40 134.25 133.00 130.90 132.33 130.24 129.05 127.00 133.51 131.40 129.67 127.62 136.23 134.08 130.33 128.21 127.49 125.47 121.58 119.65 115.14 113.32 108.67 106.95 116.79 114.95 109.84 108.10 130.08 130.60 125.60 123.61 127.44 125.43 120.75 118.84 134.04 131.92 127.50 125.49 128.75 126.72 120.70 r/ 118.79 r/ NA NA 118.25 116.38	No. 1 HMS No. 1 HMS Pig In \$\frac{1}{1} \text{t}\$ \$\frac	

r/ Revised. NA Not available.

Note: Long tons = lt; metric tons = t.